

Division of Strength of Materials and Structures

Faculty of Power and Aeronautical Engineering

Finite element method (FEM1)

Lecture 3B. 2D Plate modeled using CST finite elements

03.2025

Model of a rectangular plate

CST element in Plain Stress

			(Calcula	ating t	ne e	lemen	ıt 1 r	matric	ces						
	y 1	80		33) Eler E= ni=	nent	he	0.: e= e=	1 7.00E+04 33333333 2 2000	4 MPa 3 2 mm 2 mm ²		[B]	$=\frac{1}{2A_e}\begin{bmatrix}b\\c\\c\end{bmatrix}$	$ \begin{array}{cccc} _{1} & 0 & b \\ _{2} & c_{1} & 0 \\ _{1} & b_{1} & c_{2} \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 0\\c_3\\b_3\end{bmatrix}$
nota 	X	$\begin{array}{c} 20 \\ cal \ 10 \\ 0 \\ \hline 1 \end{array} 0$	10 20 30	2 40 50 (2)	$a_i = b_i = c_i =$	$\frac{x_j y_k}{y_j - y_k} - \frac{y_k}{x_k - x_j}$	х _к у _ј					$[D] = \frac{1}{(1)}$	$\frac{E}{-\nu^2} \begin{bmatrix} 1\\\nu\\0 \end{bmatrix}$	$ \begin{array}{ccc} \nu & 0 \\ 1 & 0 \\ 0 & \frac{1}{2}(1 - 1) \end{array} $	· v)]
↓ (1) (2) (3)	node 1 2 3	x i 0 50 50	y i 0 0 80	x 5 5 0	j D D	yj 0 80 0	x k 50 0 50		y k 80 0 0		ai 4000 0 0	0	bi -80 80 0		ci 0 -50 50	
		-0.02	0	0.02	0		0	0				-	0.02	0	0	
B	1=	0	0	0	-0.012	5	0	0.012	25	B ₁	⁻=		0	0	-0.02	
		0	-0.02	-0.0125	0.02	0	0.0125	0				(0.02	0	-0.0125	
	-					_		_					0	-0.0125	0.02	
			78750)	26250		0						0	0	0.0125	
		D=	26250)	78750		0						0	0.0125	0	
			0		0		26250				-					-

Calculating the element 1 matrices

	31.5	0	-31.5	6.5625	0	-6.5625
	0	10.5	6.5625	-10.5	-6.5625	0
$B_1^T D B_1 =$	-31.5	6.5625	35.60156	-13.125	-4.10156	6.5625
6×3 3×3 3×6	6.5625	-10.5	-13.125	22.80469	6.5625	-12.3047
	0	-6.5625	-4.10156	6.5625	4.101563	0
	-6.5625	0	6.5625	-12.3047	0	12.30469

Matrix multiplication example:

	nupneu	cion exe	impre.	D		B_1							
			78750	26250	0	-0.02	0	0.02	0	0	0		
	_		26250	78750	0	0	0	0	-0.0125	0	0.0125		
E	3₁'		0	0	26250	0	-0.02	-0.0125	0.02	0.0125	0		
-0.02	0	0				31.5	0	-31.5	6.5625	0	-6.5625		
0	0	-0.02				0	10.5	6.5625	-10.5	-6.5625	0		
0.02	0	-0.0125				-31.5	6.5625	35.60156	-13.125	-4.10156	6.5625		
0	-0.0125	0.02				6.5625	-10.5	-13.125	22.80469	6.5625	-12.3047		
0	0	0.0125				0	-6.5625	-4.10156	6.5625	4.101563	0		
0	0.0125	0				-6.5625	0	6.5625	-12.3047	0	12.30469		

80 70 3	Calculation of the stiffness matrix of element 1											
60			31.5		0	4	31.5	6.	5625		0	-6.5625
			0	1	0.5	6.	5625	-1	10.5	-6.	5625	0
20	B	^T DB ₁ =	-31.5	6.	5625	35.	60156	-13	3.125	-4.1	0156	6.5625
			6.5625	-'	10.5	-13	3.125	22.	80469	6.	5625	-12.3047
0 10 20 50 40 50			0	-6.	5625	-4.1	10156	6.	5625	4.1	01563	0
$[k]_{e} = A_e t_e [B]^T$	$\begin{bmatrix} D \end{bmatrix} \begin{bmatrix} B \end{bmatrix}$ $3 \times 3 3 \times 6$		-6.5625		0	6.	5625	-12	.3047		0	12.30469
element matrix of ele	ement 1:											
		u	v		u		v		u		V	
		1	1		2		2		3		3	
u	1	126000	0		-1260	000	2628	5 0	0		-262	50
v	1	0	42000		262	50	-420	00	-262	50	0	
k₁= u	2	-126000	26250		14240	06.3	-525	00	-1640	6.3	2628	50
v	2	26250	-42000		-525	00	91218	3.75	262	50	-4921	8.8
u	3	0	-26250		-1640	6.3	2625	50	16406	6.25	0	
v	3	-26250	0		262	50	-4921	8.8	0		49218	.75

Determination of the extended stiffness matrix of element 1

extended stiffness matrix of element 1:

		u1	v1	u2	v2	u3	v3	u4	V4
	u1	126000	0	-126000	26250	0	-26250	0	0
	v1	0	42000	26250	-42000	-26250	0	0	0
	u2	-126000	26250	142406.3	-52500	-16406.3	26250	0	0
k ₁ *=	v2	26250	-42000	-52500	91218.75	26250	-49218.8	0	0
	u3	0	-26250	-16406.3	26250	16406.25	0	0	0
	٧3	-26250	0	26250	-49218.8	0	49218.75	0	0
	u4	0	0	0	0	0	0	0	0
	v4	0	0	0	0	0	0	0	0

	3 80 • 4		2	Calcula	iting	the e	lemer	nt 2 matr	ices		
y • •	70 60 50 40 30 20			Element E= ni=	h A Pm	e= 200	2 0E+04 MF 33333 2 mr 00 mr 60 MF	Pa n Pa	$[B] = \frac{1}{2A_e} \begin{bmatrix} b_1 \\ 0 \\ c_1 \end{bmatrix}$	$\begin{array}{cccc} & 0 & b_2 \\ & c_1 & 0 \\ & b_1 & c_2 \end{array}$	$ \begin{array}{cccc} 0 & b_3 & 0 \\ c_2 & 0 & c_3 \\ b_2 & c_3 & b_3 \end{array} $
local notation ↓	$ \begin{array}{c} 10 \\ 0 \\ 1 \end{array} $) 20 30 40	50	$a_i = b_i = c_i = c_i$	$\frac{x_j y_k}{y_j - j}$ $\frac{x_k - j}{x_k - j}$	– x _k y _j Y _k x _j			$[D] = \frac{1}{(1)}$	$\frac{E}{-\nu^2} \begin{bmatrix} 1\\ \nu\\ 0 \end{bmatrix}$	$\begin{bmatrix} \nu & 0 \\ 1 & 0 \\ 0 & \frac{1}{2}(1-\nu) \end{bmatrix}$
1 node 2 3 3 4	x i 0 50 0	yi 0 80 80	xj 50 0 0	<u>уј</u> 80 80 0	x I 0 0 50	k	y k 80 0 80	ai 4000 0	bi 0 80 -80		ci -50 0 50
	0	0	0.02	0	-0.0	2	0		0	0	-0.0125
B ₂ =	0	-0.0125	0	0	0	0.0	0125	B ₂ ^T =	0	-0.0125	0
	-0.0125	0	0	0.02	0.012	25 -0	0.02		0.02	0	0
	_					1			0	0	0.02
			78750	2625	0	0			-0.02	0	0.0125
		D=	26250	7875	0	0			0	0.0125	-0.02
			0	0		2628	50				

Calculation of the stiffness matrix of element 2

80 +4 70 -		3			4.10156	625	0	0	-6.5625	-4.10156	6.5625
60					0		12.30469	-6.5625	0	6.5625	-12.3047
40			$\mathbf{B}_{2}^{T}\mathbf{D}\mathbf{B}_{2}$	3 2=	0		-6.5625	31.5	0	-31.5	6.5625
20 10					-6.562	25	0	0	10.5	6.5625	-10.5
0 <mark>41</mark> 0 1	10 20 30	40 50			-4.10156	625	6.5625	-31.5	6.5625	35.60156	-13.125
					6.562	5	-12.3047	6.5625	-10.5	-13.125	22.80469
eleme	nt matr	ix of element	2:								
					u		V	u	v	u	v
					1		1	3	3	4	4
		u	1	164	1 106.25		1 0	3 0	3 -26250	4 -16406.3	4 26250
		u v	1 1	164	1 406.25 0	4	1 0 9218.75	3 0 -26250	3 -26250 0	4 -16406.3 26250	4 26250 -49218.8
	k ₂ =	u v u	1 1 3	164	1 406.25 0 0	4	1 0 9218.75 -26250	3 0 -26250 126000	3 -26250 0 0	4 -16406.3 26250 -126000	4 26250 -49218.8 26250
	k ₂ =	u v u v	1 1 3 3	-2	1 406.25 0 0 6250	4	1 0 9218.75 -26250 0	3 0 -26250 126000 0	3 -26250 0 0 42000	4 -16406.3 26250 -126000 26250	4 26250 -49218.8 26250 -42000
	k ₂ =	u v u v	1 1 3 3 4	-24 -164	1 406.25 0 0 6250 406.25	4	1 0 9218.75 -26250 0 26250	3 0 -26250 126000 0 -126000	3 -26250 0 0 42000 26250	4 -16406.3 26250 -126000 26250 142406.3	4 26250 -49218.8 26250 -42000 -52500
	k ₂ =	u v u v u u	1 1 3 3 4 4 4	-2 -164 -2(1 406.25 0 0 6250 406.25 6250	-4	1 0 9218.75 -26250 0 26250 49218.75	3 0 -26250 126000 0 -126000 26250	3 -26250 0 0 2000 26250 -42000	4 -16406.3 26250 -126000 26250 142406.3 -52500	4 26250 -49218.8 26250 -42000 -52500 91218.75

Determination of the extended element stiffness matrix 2

extended stiffness matrix of element 2:

		u1	v1	u2	v2	u3	v3	u4	v4
	u1	16406.25	0	0	0	0	-26250	-16406.3	26250
	v1	0	49218.75	0	0	-26250	0	26250	-49218.75
	u2	0	0	0	0	0	0	0	0
k ₂ *=	v2	0	0	0	0	0	0	0	0
	u3	0	-26250	0	0	126000	0	-126000	26250
	٧3	-26250	0	0	0	0	42000	26250	-42000
	u4	-16406.3	26250	0	0	-126000	26250	142406.3	-52500
	v4	26250	-49218.8	0	0	26250	-42000	-52500	91218.75

Determination of the global stiffness matrix

extended stiffness matrix of element 2:

u1 v1 u2 v2 u3 v3 u4 v4 u2 v2 u3 v3 u1 v1 u4 v4 u1 0 0 126000 0 **u**1 16406.25 0 0 0 -126000 26250 -26250 0 0 -26250 -16406.3 26250 v1 0 0 0 42000 26250 -42000 -26250 0 v1 0 49218.75 0 0 -26250 0 -49218.75 26250 u2 0 0 -126000 26250 42406.3 -52500 -16406.3 u2 0 0 0 0 0 0 0 26250 0 k₁*= v2 k₂*= 91218.75 0 0 v2 0 0 0 0 0 26250 -42000 -52500 26250 -49218.8 0 0 0 u3 0 0 0 -16406.3 26250 16406.25 0 u3 -26250 0 -26250 0 0 126000 0 -126000 26250 v3 0 0 0 -26250 0 26250 49218.8 49218.75 v3 0 0 -26250 0 0 42000 26250 -42000 0 0 0 0 0 0 u4 0 0 u4 0 0 -16406.3 26250 -126000 26250 142406.3 -52500 0 0 0 0 0 0 0 0 v4 0 0 v4 26250 49218.8 26250 -42000 -52500 91218.75 global stiffness matrix: **u**1 v1 u2 v2 u3 v3 u4 v4 **u**1 142406.3 26250 0 -126000 0 -52500 -16406.326250 v1 91218.75 26250 -42000 -52500 0 26250 -49218.75 0 u2 142406.3 -126000 26250 -52500 -16406.3 26250 0 0 K= v2 -42000 -52500 91218.75 26250 -49218.8 0 26250 0 NDOF × NDOF u3 -52500 -16406.3 26250 142406.3 0 0 -126000 26250 v3 91218.75 -52500 0 26250 -49218.8 0 26250 -42000 u4 142406.3 -16406.3 26250 0 0 -126000 26250 -52500 v4 26250 -49218.8 26250 -42000 -52500 91218.75 0 0

extended stiffness matrix of element 1:

Introduction of boundary conditions to the global stiffness matrix

$F_1^{p} = h \int p_x(s) N_1(s) \, ds = h \int 0 \cdot 0 \, ds = 0$ $F_2^{p} = h \int p_y(s) N_1(s) \, ds = h \int p_{\max} \left(1 - \frac{s}{l}\right) \cdot 0 \, ds = 0$ $F_{3}^{p} = h \int p_{x}(s) N_{2}(s) ds = h \int 0 \cdot \frac{s}{l} ds = 0$ $F_4^{p} = h \int p_y(s) N_2(s) \, ds = h \int p_{\text{max}} \left(1 - \frac{s}{l}\right) \cdot \frac{s}{l} \, ds = \frac{1}{6} p_{\text{max}} lh = 1000 \, N$ $F_5^{p} = h \int p_x(s) N_3(s) \, ds = h \int 0 \cdot (1 - \frac{s}{1}) \, ds = 0$ $F_6^{p} = h \int_0^{\infty} p_y(s) N_3(s) \, ds = h \int_0^{\infty} p_{\max} \left(1 - \frac{s}{l}\right) \cdot \left(1 - \frac{s}{l}\right) \, ds = \frac{1}{3} p_{\max} \, lh = 2000 \, N$

Equivalent load vector of surface loads

	0
	0
	0
F ^e =	0
	0
	1000
	0
	2000

				Deteri	minatic	on of no	dal dis	place	men	ts		
4	D _{max}			_			0			Rx1		Rx1
		3		R_{x4}			0			Ry1		Ry1
10 Million	/					0			0		0	
_	/					F	e = 0		F ⁿ =	Ry2	F=	Ry2
	/						0			0	NUUF X I	0
	/	2	$R_{_{y1}}$				1000			0		1000
		2	<i>y</i> 1		R_{y2}		0			Rx4		Rx4
1-		0		R_{x1}			2000			0		2000
		u2	u3	٧3	v4			u2	2	u3	v3	v4
	u2	142406.3	-16406.3	26250	0		u2	7.71864	4E-06	1.20993E-06	-3.02221E-06	-1.7397E-06
K=	u3	-16406.3	142406.3	0	26250	K ⁻¹ =	u3	1.2099;	3E-06	7.71864E-06	-1.7397E-06	-3.02221E-06
N×N	٧3	26250	0	91218.75	-42000	N×N	v3	-3.0222	1E-06	-1.7397E-06	1.53082E-05	7.54899E-06
	v4	0	26250	-42000	91218.75		v4	-1.7397	7E-06	-3.02221E-06	7.54899E-06	1.53082E-05

	-0.006502	mm	u2
q=	-0.007784	mm	u3
N × 1	0.030406	mm	v3
	0.038165	mm	v4

Determination of elastic strain energy in elements

node	xi	уi	хj	Уj	xk	y k	ai	bi	ci
1	0	0	50	0	50	80	4000	-80	0
2	50	0	50	80	0	0	0	80	-50
3	50	80	0	0	50	0	0	0	50

$$N_{1}(x_{p}, y_{p}) = N_{1}(12.5, 20) = \frac{a_{1} + b_{1}x_{p} + c_{1}y_{p}}{2 \cdot A_{e}} = \frac{4000 \text{ mm}^{2} + (-80 \text{ mm}) \cdot 12.5 \text{ mm} + 0 \text{ mm} \cdot 20 \text{ mm}}{2 \cdot 2000 \text{ mm}^{2}} = \frac{3}{4}$$

$$N_{2}(x_{p}, y_{p}) = N_{2}(12.5, 20) = \frac{a_{2} + b_{2}x_{p} + c_{2}y_{p}}{2 \cdot A_{e}} = \frac{0 + 80 \cdot 12.5 + (-50) \cdot 20}{2 \cdot 2000} = 0$$

$$N_{3}(x_{p}, y_{p}) = N_{3}(12.5, 20) = \frac{a_{3} + b_{3}x_{p} + c_{3}y_{p}}{2 \cdot A_{e}} = \frac{0 + 0 \cdot 12.5 + 50 \cdot 20}{2 \cdot 2000} = \frac{1}{4}$$

Determination of solutions at point P on the boundary of elements

$$\begin{split} N_{1}(12.5,20) + N_{2}(12.5,20) + N_{3}(12.5,20) &= \frac{3}{4} + 0 + \frac{1}{4} = 1 \\ x = \sum_{i=1}^{3} N_{i}(x, y) \cdot x_{i} \Longrightarrow x_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot x_{i} = N_{1} \cdot x_{1} + N_{2} \cdot x_{2} + N_{3} \cdot x_{3} = \\ &= \frac{3}{4} \cdot 0 + 0 \cdot 50 + \frac{1}{4} \cdot 50 = 12.5 \text{ mm} \\ y = \sum_{i=1}^{3} N_{i}(x, y) \cdot y_{i}^{i} \Longrightarrow y_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot y_{i} = N_{1} \cdot y_{1} + N_{2} \cdot y_{2} + N_{3} \cdot y_{3} = \\ &= \frac{3}{4} \cdot 0 + 0 \cdot 0 + \frac{1}{4} \cdot 80 = 20 \text{ mm} \\ u = \sum_{i=1}^{3} N_{i}(x, y) \cdot u_{i}^{i} \Longrightarrow u_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot u_{i} = N_{1} \cdot u_{1} + N_{2} \cdot u_{2} + N_{3} \cdot u_{3} = \\ &= \frac{3}{4} \cdot 0 + 0 \cdot (-0.006502) + \frac{1}{4} \cdot (-0.007784) = -0.00195 \text{ mm} \\ v = \sum_{i=1}^{3} N_{i}(x, y) \cdot v_{i} \Longrightarrow v_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot v_{i} = N_{1} \cdot v_{1} + N_{2} \cdot v_{2} + N_{3} \cdot v_{3} = \\ &= \frac{3}{4} \cdot 0 + 0 \cdot (-0.006502) + \frac{1}{4} \cdot (-0.007784) = -0.00195 \text{ mm} \\ v = \sum_{i=1}^{3} N_{i}(x, y) \cdot v_{i} \Longrightarrow v_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot v_{i} = N_{1} \cdot v_{1} + N_{2} \cdot v_{2} + N_{3} \cdot v_{3} = \\ &= \frac{3}{4} \cdot 0 + 0 \cdot 0 + \frac{1}{4} \cdot 0.030406 = 0.0076 \text{ mm} \\ \end{bmatrix}$$

	0	mm	u1
	0	mm	v1
q ₁ =	-0.006502	mm	u2
ne x 1	0	mm	v2
	-0.007784	mm	u3
	0.030406	mm	v3

$$\begin{split} N_1(x_p, y_p) &= N_1(12.5, 20) = \frac{a_1 + b_1 x_p + c_1 y_p}{2 \cdot A_e} = \frac{4000 \text{ mm}^2 + 0 \text{ mm} \cdot 12.5 \text{ mm} + (-50 \text{ mm}) \cdot 20 \text{ mm}}{2 \cdot 2000 \text{ mm}^2} = \frac{3}{4} \\ N_2(x_p, y_p) &= N_2(12.5, 20) = \frac{a_2 + b_2 x_p + c_2 y_p}{2 \cdot A_e} = \frac{0 + 80 \cdot 12.5 + 0 \cdot 20}{2 \cdot 2000} = \frac{1}{4} \\ N_3(x_p, y_p) &= N_3(12.5, 20) = \frac{a_3 + b_3 x_p + c_3 y_p}{2 \cdot A_e} = \frac{0 + (-80) \cdot 12.5 + 50 \cdot 20}{2 \cdot 2000} = 0 \end{split}$$

Determination of solutions at point P on the boundary of elements

$$\begin{split} N_{1}(12.5,20) + N_{2}(12.5,20) + N_{3}(12.5,20) &= \frac{3}{4} + \frac{1}{4} + 0 = 1 \\ x &= \sum_{i=1}^{3} N_{i}(x, y) \cdot x_{i} \Longrightarrow x_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot x_{i} = N_{1} \cdot x_{1} + N_{2} \cdot x_{2} + N_{3} \cdot x_{3} = \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 50 + 0 \cdot 0 = 12.5 \text{ mm} \\ y &= \sum_{i=1}^{3} N_{i}(x, y) \cdot y_{i}^{\dagger} \Longrightarrow y_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot y_{i} = N_{1} \cdot y_{1} + N_{2} \cdot y_{2} + N_{3} \cdot y_{3} = \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot 80 + 0 \cdot 80 = 20 \text{ mm} \\ u &= \sum_{i=1}^{3} N_{i}(x, y) \cdot u_{i}^{\dagger} \Longrightarrow u_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot u_{i} = N_{1} \cdot u_{1} + N_{2} \cdot u_{2} + N_{3} \cdot u_{3} = \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot (-0.007784) + 0 \cdot 0 = -0.00195 \text{ mm} \\ v &= \sum_{i=1}^{3} N_{i}(x, y) \cdot v_{i} \Longrightarrow v_{p} = \sum_{i=1}^{3} N_{i}(x_{p}, y_{p}) \cdot v_{i} = N_{1} \cdot v_{1} + N_{2} \cdot v_{2} + N_{3} \cdot v_{3} = \\ &= \frac{3}{4} \cdot 0 + \frac{1}{4} \cdot (0.030406 + 0 \cdot 0.038165 = 0.0076 \text{ mm} \\ v_{3} v_{4} \\ \text{global notation} \end{split}$$

	0	mm	u1
q ₂ =	0	mm	v1
	-0.007784	mm	u3
ne x 1	0.030406	mm	v3
	0	mm	u4
	0.038165	mm	v4

Displacements at point P on the boundary of elements

UX displacement

Displacements at point P on the boundary of elements

UY displacement

Strain in Z at the boundary of elements

y

The impact of discretization on the quality of results

